## Reciprocal Functions

Notes, examples, and practice (and solutions)


Topics include asymptotes, parent functions, transformations, graphing, intercepts, domain/range, applications, and more...

## The Reciprocal Function

$$
f(x)=\frac{1}{x}
$$

## Sketching the 'parent function'

Using a table of values, a pattern emerges...

| x | $\frac{1}{\mathrm{x}}$ |
| :--- | :--- |
| -5 | $-1 / 5$ |
| -2 | $-1 / 2$ |
| -1 | -1 |
| $-1 / 4$ | -4 |
| 0 | undefined |
| $1 / 4$ | 4 |
| 1 | 1 |
| 2 | $1 / 2$ |
| 5 | $1 / 5$ |



Transforming a reciprocal function: $\quad y=\frac{a \cdot 1}{b(x-c)}+d$


Approach 1: Using the parent function and transformations
Example: Sketch the function

$$
\mathrm{y}=\frac{2}{(\mathrm{x}-3)}+5
$$

Recognize the parent function: $\quad y=\frac{1}{x}$

Determine the transformations/shifts:

$$
\text { vertical shift (d): up } 5 \text { units }
$$

 horizontal shift (c): shift 3 units to the right amplitude (a): "stretch" by magnitude of 2


Approach 2: Using asymptotes, intercepts, points, and end behavior

Example: Sketch the function $\quad \mathrm{y}=\frac{3}{(2 \mathrm{x}+4)}$
Asymptotes: rational expression is 'bottom heavy', so the end behavior is $\mathrm{y}=0$ the expression is undefined when denominator $=0 \ldots$

This occurs at $\mathrm{x}=-2$

Intercepts: $x$-intercepts (zeros)? They occur when $y=0 \ldots$ There are none.. $y$-intercept -- when $x=0: \quad y=\frac{3}{(2(0)+4)}=3 / 4$

A few points: $(1,1 / 2) \quad(4,1 / 4) \quad(-5,-1 / 2) \quad(-2.5,-3) \quad(-3 / 2,-3)$



PRACTICE EXERCISES- $-\rightarrow$

## Reciprocal Functions

Answer the following and sketch the graph:

1) $y=\frac{3}{x}$

Domain:
Range:
Vertical Asymptote:
Horizontal Asymptote:
y-intercept:
x-intercept(s):

2) $y=\frac{1}{x-5}$

Domain:
Range:
Vertical Asymptote:
Horizontal Asymptote:
$y$-intercept:
x-intercept(s):
3) $f(x)=\frac{3}{x+4}+2$

Domain:
Range:
Vertical Asymptote:
Horizontal Asymptote:
$y$-intercept:
x-intercept(s):

4) $y=\frac{3 x+10}{x}$

## Domain:

Range:
Vertical Asymptote:
Horizontal Asymptote:
y-intercept:
x-intercept(s):
5) Write a rational function that has asymptotes $x=-3$ and $y=5$ (bonus: write a 2 nd function that has the same asymptotes)

Graph the function(s).


6) A tennis club has a $\$ 100$ membership and charges $\$ 5$ per hour of court time. Write a model that expresses the average cost of playing tennis at the club. (label the variables)

What do the asymptotes represent?

Identify and discuss the domain and range:

## Graph the model:

What is the average cost of playing 10 hours?
(Show algebraically and graphically)

7) For the following reciprocal functions:
a) Draw and name the asymptotes
b) What is the equation?
c) Find the $x$ and $y$-intercepts
a) Draw and name the asymptotes
b) What is the equation?
c) Find the $x$ and $y$-intercepts
a) Draw and name the asymptotes
b) What is the equation?
c) Find the $x$ and $y$-intercepts

Reciprocal Functions



(

SOLUTIONS- $\rightarrow$

Answer the following and sketch the graph:

1) $y=\frac{3}{x}$

Domain: all real numbers except $0 \quad(-\infty, 0) \cup(0, \infty)$
Range: all real numbers except $0 \quad(-\infty, 0) \cup(0, \infty)$
Vertical Asymptote: $\mathrm{x}=0$ points include:
Horizontal Asymptote: $y=0$
$(1,3)(3,1)$
$(1 / 2,6)(6,1 / 2)$
y-intercept: none
x-intercept(s): none
$(-1,-3)(-3,-1)$
$(-1 / 2,-6)(-6,-1 / 2)$
2) $y=\frac{1}{x-5} \quad$ reciprocal function (1/x) shifted 5 units to the right

Domain: all real numbers except $5(-\infty, 5) \cup(5, \infty)$
Range: all real numbers except $0 \quad(-\infty, 0) \cup(0, \infty)$
Vertical Asymptote: $x=5$
Horizontal Asymptote: $y=0$ ('bottom heavy')
y-intercept: $\quad(0,-1 / 5)$
points include:
x-intercept(s): none
$(6,1)(5.5,2)(5.1,10)$
$(4,-1)(4.5,-2)(3,-1 / 2)$
3) $f(x)=\frac{3}{\mathrm{x}+4}+2 \quad$ reciprocal function (1/x) shifted to the left 4 units and shifted up 2 units
Domain: all real numbers except $(-\infty,-4) \cup(-4, \infty)$
Range: all real numbers except $2(-\infty, 2) \cup(2, \infty)$
Vertical Asymptote: $x=-4$
Horizontal Asymptote: $y=2$
y-intercept: $\quad(0,11 / 4)$
x-intercept(s): (-11/2, 0)




## SOLUTIONS

4) $y=\frac{3 x+10}{x}$
points include: $(2,8)(5,5)(10,4)$
$(-2,-2)(-5,1)(-10,2)$

| Domain: | all real numbers except 0 | $(-\infty, 0) \cup(0, \infty)$ |
| :--- | :--- | :--- |
| Range: | all real numbers except | $(-\infty, 3) \cup(3, \infty)$ |

Vertical Asymptote: $\quad \mathrm{x}=0$
Horizontal Asymptote: $y=3$ degree numerator $=$ degree denominator so look at lead coefficients:

$$
\begin{array}{lll}
y \text {-intercept: } & \begin{array}{l}
\text { none } \\
\text { (undefined at } \mathrm{x}=0)
\end{array} & \frac{3}{1}=3 \\
\mathrm{x} \text {-intercept(s): } & (-10 / 3,0)
\end{array}
$$


5) Write a rational function that has asymptotes $x=-3$ and $y=5$ (bonus: write a 2 nd function that has the same asymptotes)

Graph the function(s).

$$
\begin{aligned}
& \frac{1}{x} \quad \begin{array}{l}
\text { asymptote } \\
\text { at } x=-3
\end{array} \frac{1}{x+3} \quad \begin{array}{l}
\text { end behavior } \\
\text { horizontal asymptote } \\
\text { at } y=5
\end{array} \frac{1}{x+3}+5 \\
& \text { a second function may be } \\
& \qquad y=\frac{2}{x+3}+5
\end{aligned}
$$



- $(1,105)$

6) A tennis club has a $\$ 100$ membership and charges $\$ 5$ per hour of court time. Write a model that expresses the average cost of playing tennis at the club. (label the variables)

$$
\mathrm{AC}=\frac{100+5 \mathrm{~h}}{\mathrm{~h}} \text { where } \mathrm{h} \text { is natural number }
$$

What do the asymptotes represent? $\quad \mathrm{h} \neq 0$ (cannot have 0 hours)

$$
\mathrm{AC}=5 \text { (average cost approaches } 5)
$$

Identify and discuss the domain and range: domain is all natural numbers (there are no "negative hours")
Graph the model:

$$
\begin{aligned}
& \text { Assuming the club charges per hour } \\
& \text { (WITHOUT partial hours), the range } \\
& \text { is } \quad\{105,55,381 / 3,30,25,212 / 3 \ldots\}
\end{aligned}
$$

Note: If club charges partial hours, the model's domain/range
What is the average cost of playing 10 hours?
(Show algebraically and graphically)

$$
\begin{aligned}
& \text { urs? } \\
& \mathrm{AC}=\frac{100+5(10)}{(10)}=15 \text { would differ. } \\
& =1 \text { dors/hour }
\end{aligned}
$$


7) For the following reciprocal functions:

SOLUTIONS
Reciprocal Functions
a) Draw and name the asymptotes

$$
\begin{array}{|l|}
\hline x=3 \\
y=5 \\
\hline
\end{array}
$$

b) What is the equation?

$$
\mathrm{y}=5+\frac{1}{(\mathrm{x}-3)}
$$

c) Find the $x$ and $y$-intercepts

$$
\begin{array}{ll}
\begin{array}{l}
y \text {-intercept } \\
\text { (when } x=0)
\end{array} & \begin{array}{l}
\text { x-intercept } \\
\text { (when } y=0)
\end{array} \\
y=5+\frac{1}{(0-3)} & 0=5+\frac{1}{(x-3)} \\
y=42 / 3 & -5=\frac{1}{(x-3)} \\
\left(0,4 \frac{2}{3}\right) & -5 x+15=1 \\
x=14 / 5
\end{array}
$$


a) Draw and name the asymptotes $\begin{aligned} & x=-6 \\ & y=0\end{aligned}$
b) What is the equation?

$$
y=\frac{1}{(x+6)}
$$

c) Find the $x$ and $y$-intercepts

$$
\begin{array}{ll}
y=\frac{1}{(0+6)} & 0=\frac{1}{(x+6)} \\
y=1 / 6 & \text { NO } x \text {-intercept!! }
\end{array}
$$

$$
\left(0, \frac{1}{6}\right)
$$

a) Draw and name the asymptotes $\begin{aligned} & x=2 \\ & y=4\end{aligned}$
b) What is the equation?

$$
y=4-\frac{1}{(x-2)}
$$

c) Find the $x$ and $y$-intercepts

NOTE: the reciprocal function is reflected over the x -axis, so it is negative y-intercept:
(0, $4 \frac{1}{2}$ )
mathplane.com
x-intercept:

$$
0=4-\frac{1}{(x-2)}
$$

$$
\begin{array}{ll}
4 x-8=1 \\
x=9 / 4 & \left(\frac{9}{4}, 0\right) \\
\hline
\end{array}
$$




Thanks for visiting (Hope it helped!)
If you have questions, suggestions, or requests, let us know.
Cheers.


Also, at Mathplane.ORG for tablets and phone.
And, our store at TeachersPayTeachers.com

